Code UE	LU3PY514
Nom de l'UE :	Physique des milieux continus
Nom du responsable	Thierry Hocquet
Adresse email du responsable	thierry.hocquet@sorbonne-universite.fr
Nombre d'Ects	6
Volume horaire (en heure)	
СМ	12 x 2 h = 24 h
TD	12 x 2 h = 24 h
ТР	
RP	2 x 2 h = 4 h
НРР	
Travail personnel de l'étudiant	52
Période d'enseignement	S5
Enseignement à distance ?	non
Enseignement en présentiel ?	oui
	Physique: notions élémentaires de mécanique classique et de thermodynamique, notion d'hydrostatique et théorème de Bernoulli.
Prérequis	Mathématiques : équations aux dérivées partielles, algèbre et analyse vectorielle.
	Milieux continus
	Description de la matière, description des mouvements et des flux, relation de continuité.
	Transport
	Description macroscopique du transport : équation de bilan, courants de diffusion et de
	convection. Transport de la chaleur, loi de Fourier, résistance thermique. Transport de
	matière, loi de Fick. Transport de chaeges, effets croisés. Résolution de l'équation de
	diffusion : régime permanent, régime transitoire. Rayonnement thermique
	Densité spectrale, notion de radiométrie, lois de Kirchhoff et de Wien. Corps noir, résultats
	expérimentaus et loi de Planck.
	Hydrodynamique
	Description physique d'un fluide. Statique des fluides (théorème d'Archimède), cinématique
	des fluides (points de vue d'Euler et de Lagrange, dérivée particulaires, exemples
	d'écoulements).
	Fluides parfaits : bilan d'impulsion (équation d'Euler, exemple de la propagation du son), bilan d'énergie (équation de Bernoulli).
	Fluides visqueux : transport d'impulsion, équation de Navier-Stokes, écoulements de Couette
	et de Poiseuille, régimes d'écoulement et nombre de Reynolds, forces de traînée et de
	portance, couche limite et turbulence.
	Phénomènes de surface : tension superficielle, longueur capillaire, nombre de Bond, équilibre
	des interfaces (lois de Laplace, Young-Dupré, Jurin).
	Élasticité
	Introduction au formalisme des contraintes et des déformations, loi de Hooke. Solides
	élastiques et isotropes, modules élastiques. Exemples de déformations élastiques dans des
Précentation nédagogique	cas simples. Ondes acoustiques. Éléments de rhéologie.
Présentation pédagogique	
Thèmes abordés	Phénomènes de transport, hydrodynamique, élasticité
Acquis attendus à l'issue de l'UE	Savoir résoudre un problème élémentaire en phénomènes de transport, hydrodynamique ou élasticité
Savoir faire techniques	Comprendre intuitivement la physique des milieux continus. Savoir identifier les grandeurs
1 4	physiques pertinentes dans la description d'un phénomène macroscopique
	Savoir appliquer les notions de champs de vecteurs et de leurs variations aux fluides et
	milieux déformables. Appliquer les équations de bilan à un élément de volume et dresser le
Causain faine and distance	bilan dans des cas simples.
Savoir faire expérimentaux	Le contenu expérimental fait l'objet d'autres UE.

Organisation pédagogique	Le cours théorique sera complété par la mise en application des notions acquises dans les TD et les 3 séances de résolution de problèmes. Une épreuve écrite finale sera organisée.
Modalités d'évaluation	RP: 10/100 – CC: 30/100 – Examen final: 60/100
	En français Thermodynamique , Bertin, Faroux, Renault, Dunod. Physique pour les sciences de la vie , A. Bouyssy, M. Davier et B. Gatty, Belin. Hydrodynamique Physique , E. Guyon, JP. Hulin et L. Petit, EDP Sciences. Mécanique des fluides , S. Candel, Dunod. Gouttes, bulles, perles et ondes , PG. de Gennes, F. Brochard-Wyart et D. Quéré, Belin. Le cours de physique de Feynman , R. Feynman, tome 2, chap. 38, 39, 31. Mécanique des fluides , L. Landau, Édition MIR Théorie de l'élasticité , L. Landau, Édition MIR En anglais Fundamentals of statistical and thermal physics , F. Reif, Waveland Press. Fluid mechanics , P.K. Kundu and I.M. Cohen, Academic Press. Elementary fluid dynamics , D.J. Acheson, Oxford.
Ouvrages de référence	Mechanics of materials », J.M. Gere and B.J. Goodno, Cengage Learning Custom Publishing.
	sem 1 : 1 CM sem 2 à 12 : 10 CM + 10 TD + 2 RP
Déroulé souhaité sur les 13	sem 13 : 1 TD
semaines du semestre	Le CC (1h30) pourra au besoin être réalisé pendant une séance de CM.